A Vector Quantization Approach for Voice Recognition Using Mel Frequency Cepstral Coefficient (MFCC): A Review

نویسندگان

  • Anjali Jain
  • O. P. Sharma
چکیده

This paper presents a brief survey on Automatic Voice Recognition so as to provide a technological perspective and an appreciation of the fundamental progress that has been accomplished in area of voice communication. The voice is a signal of infinite information. After years of research and development the accuracy of automatic voice recognition remains one of the important research challenges in respect to variations of the speakers, text and surroundings. Digital processing of voice recognition and speech signal is very important for fast and accurate automatic voice recognition technology. This review paper summarizes and compares some of the well known methods used in various stages of voice recognition system. It further helps to identify research topic and applications which are at the forefront of this exciting and challenging field of voice recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Recognition using MFCC and Improved Weighted Vector Quantization Algorithm

Speaker recognition is one of the most essential tasks in the signal processing which identifies a person from characteristics of voices . In this paper we accomplish speaker recognition using Mel-frequency Cepstral Coefficient (MFCC) with Weighted Vector Quantization algorithm. By using MFCC, the feature extraction process is carried out. It is one of the nonlinear cepstral coefficient functio...

متن کامل

Comparative Study of MFCC And LPC Algorithms for Gujrati Isolated Word Recognition

The study performs feature extraction for isolated word recognition using Mel-Frequency Cepstral Coefficient (MFCC) for Gujarati language. It explains feature extraction methods MFCC and Linear Predictive Coding (LPC) in brief. The paper compares the performances of MFCC and LPC features under Vector Quantization (VQ) method. The dataset comprising of males and females voices were trained and t...

متن کامل

Speaker Identification and Verification using Vector Quantization and Mel Frequency Cepstral Coefficients

In the study of speaker recognition, Mel Frequency Cepstral Coefficient (MFCC) method is the best and most popular which is used to feature extraction. Further vector quantization technique is used to minimize the amount of data to be handled in recent years. In the present study, the Speaker Recognition using Mel Frequency Cepstral coefficients and vector Quantization for the letter “Zha” (in ...

متن کامل

Automatic Speaker Recognition using LPCC and MFCC

A person's voice contains various parameters that convey information such as emotion, gender, attitude, health and identity. This report talks about speaker recognition which deals with the subject of identifying a person based on their unique voiceprint present in their speech data. Pre-processing of the speech signal is performed before voice feature extraction. This process ensures the voice...

متن کامل

Real Time Speech Recognition Using DSK TMS320C6713

Speech recognition is an important field of digital signal processing. Automatic Speaker Recognition (ASR) objective is to extract features, characterize and recognize speaker. Mel Frequency Cepstral Coefficients (MFCC) is most widely used feature vector for ASR. MFCC is used for designing a text dependent speaker identification system. In this paper the DSP processor TMS320C6713 with Code Comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013